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There are three goals in the accurate nonlinear diagnosis
of a storage ring. First, the beam must be moved to am-
plitudes many times the natural beam size. Second, strong
and long lasting signals must be generated. Third, the mea-
surement technique should be non-destructive.

Conventionally, a single turn kick moves the beam to
large amplitudes, and turn–by–turn data are recorded from
multiple beam position monitors (BPMs) [1-6]. Unfortu-
nately, tune spread across the beam causes the center of
charge beam signal to “decohere” on a time scale often less
than 100 turns. Filamentation also permanently destroys
the beam emittance (in a hadron ring). Thus, the “strong
single turn kick” technique successfully achieves only one
out of the three goals. AC dipole techniques can achieve all
three. Adiabatically excited AC dipoles slowly move the
beam out to large amplitudes. The coherent signals then
recorded last arbitrarily long. The beam maintains its orig-
inal emittance if the AC dipoles are also turned off adiabat-
ically, ready for further use.

The AGS already uses anRF dipoleto accelerate polar-
ized proton beams through depolarizing resonances with
minimal polarization loss [7]. Similar AC dipoles will be
installed in the horizontal and vertical planes of both rings
in RHIC [8]. The RHIC AC dipoles will also be used as
spin flippers, and to measure linear optical functions [9].

1 LINEAR MOTION

Horizontal motion is described using complex phasors

z ≡ x′ + i x = a eiφ (1)

so that the unperturbed one turn motion is just

zt+1 = R zt (2)

whereR = exp(i 2πQX). HereQX is the betatron tune,
and the normalized coordinatesx andx′ bothhave the di-
mensions of length. An AC dipole just after the reference
point gives a real normalized angular kick on turnt of

∆zt = ∆x′ = δ cos(2πQDt + ψ0) (3)

whereQD is the drive tune andψ0 is the initial phase. The
AC dipole strength isδ = (BL/(Bρ))βD, whereBL is
the integrated field amplitude,(Bρ) is the rigidity, andβD

is the Twiss function at the dipole.
If z = z0 just before the first dipole kick, then the net

displacement phasor on turnT is

zT = RT z0+(RT ∆z0+RT−1∆z1 · · ·+R1∆zT−1) (4)
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Figure 1: Adiabatic excitation of an AC dipole, in the ro-
tating frame. The circles represent single particle motion.

Theexactgeneral solution for linear motion is [10]

zT = ẑ ei2πQXT + δ− ei2πQDT − δ+ e
−i2πQDT (5)

whereẑ = z0 − δ− + δ+ is a constant given by the initial
conditions, and the complex AC dipole strengths are

δ− =
δ

4
exp(−i[πQ− − ψ0])

sin(πQ−)
(6)

δ+ =
δ

4
exp(i[πQ+ − ψ0])

sin(πQ+)

whereQ− = QD −QX andQ+ = QD +QX .
Theoscillating closed orbitis defined as that orbit which

exactly repeats itself after one modulation period. The so-
lution on turnT is obtained by puttinĝz = 0, so that

zCO = δ− ei2πQDT − δ+ e
−i2πQDT (7)

generally following a tilted ellipse,nota circle, in normal-
ized phase space. The semi-minor and semi-major axes are
||δ−|− |δ+|| and|δ−|+ |δ+| long. In practice the aspect ra-
tio of the ellipse is close to 1 when the AC dipole is driven
at a tune close to the fractional betatron tune (Q− ≈ 0).
When|δ−| � |δ+| the approximate motion is

zT ≈ ẑ ei2πQXT + δ− ei2πQDT (8)

Motion in the rotating frame, which rotates with the AC
dipole drive at2πQD per turn, is denoted by over-bars. As-
suming the previous approximation to be accurate,

zT = δ− + ẑ e−i2πQ−T (9)

That is, a test particle slowly circulates the vectorδ− at a
radius of constant length| ẑ |, as illustrated in Fig. 1.

When a bunch is considered, a distribution ofẑ values
must be used. A smoothly distributed beam has〈ẑ〉 = 0
and〈ẑ2〉 = 2βεu where〈〉 represents a bunch average, and
εu is the unnormalized root mean square emittance. The
center of charge motion in the non-rotating frame is just

〈zT 〉 = δ− ei2πQDT (10)
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Thus, the coherent bunch response to an adiabatically
driven AC dipole has a constant amplitude

aCOH = | δ− | =
1
4

∣∣∣∣ δ

sin(πQ−)

∣∣∣∣ (11)

This has been quantitatively confirmed in the AGS [7].
Any bunch tune spread (due to non-zero chromaticity or

nonlinear detuning) trivially modifies the rate of advance
around theδ− vector for different particles. Less trivially,
the tune spread also modifiesδ−, which is a function of
Q− (see Eqn. 6). This is not a practical problem ifQD is
sufficiently far outside the bunch tune spectrum.

2 SHEAR MOTION - DETUNING

The totalapproximateone turn difference map is

∆J =
δ√
βD

√
2J cos(2πQDt) cos(φ) (12)

∆φ = − δ√
βD

1√
2J

cos(2πQDt) sin(φ) (13)

+ 2π(QX0 + αJ)

whereψ0 is set to0, and the actionJ = a2/2βD has the
dimensions of length. Detuning with action is present, pro-
portional toαJ , since (ifδ = 0)

QX(J) ≡ 〈∆φ〉/2π = QX0 + αJ (14)

where〈〉 represents a time average. Aone turn discrete
HamiltonianH1 concisely describes this motion, through(

∆J
∆φ

)
=

( −∂H1/∂φ
∂H1/∂J

)
(15)

SinceH1 represents adifferencemap, and not continu-
ousdifferentialmotion, it is not (necessarily) even approx-
imately a constant of the motion. In the case at hand

H1 = 2π(QX0J+
α

2
J2)−

√
2δ√
βD

J1/2 cos(2πQDt) sin(φ)

(16)
This Hamiltonian is marred by its time dependence.

A canonical transformation to the rotating frame is
achieved by applying the generating function

W (J, φ, t) = Jφ − 2πQD t J (17)

New and old action-angle coordinates are related through

J ≡ ∂W/∂φ = J (18)

φ ≡ ∂W/∂J = φ − 2πQD t

If one turn motion is small (Q− ≈ 0), the transformation
H1 ≡ H1 + ∂W/∂t (averaged over many turns) yields

H1 = 2π(
α

2
J

2 −Q−J) − δ√
2βD

J
1/2

sin(φ) (19)

H1 is independent of time, and is a good approximation to
a constant of the motion. The fixed points are given by

φFP = ±π
2

(20)

0 = 2π(αJFP −Q−) ∓ δ

2
√

2βD

1

J
1/2

FP

In general there is either one stable fixed point, or one un-
stable and two stable fixed points [7]. When detuning is
absent (α = 0) the fixed point amplitude is

aFP =
1
4π

∣∣∣∣ δ

Q−

∣∣∣∣ (21)

agreeing with Eqn. 11 whenQ− is small!

3 NONLINEAR MOTION IN 2-D

The action–angle time series(Jx, φx, Jz , φz)t is derived
from turn–by–turn data(x1, x2, y1, y2)t recorded at 2 hor-
izontal and 2 vertical BPMs. This requires the empirical
adjustment of theβ function ratio of each BPM pair, of the
phase advance of each pair, and of the closed orbit error at
every BPM, in a process which also corrects for the ellipti-
cal motion of the oscillating closed orbit [1, 3, 6].

The general 2-D one turn discrete Hamiltonian is

H1 = 2πQX0Jx + 2πQY 0Jy (22)

+
∑
ijkl

VijklJ
i/2
x Jj/2

y sin(kφx + lφy + φijkl)

where the appropriate set of indices(ijkl) depends on the
dominant nonlinearities [2]. Only in the simplest of models
canVijkl andφijkl be predicted analytically. The horizon-
tal action time series is then

Jx(t) = Jx0 −
∑
ijkl

kVijklJ
i/2
x0 J

j/2
y0

2 sin[πQkl]
sin(2πQklt+ φ0ijkl)

(23)
A single harmonic dominates ifQkl = kQX + lQY ap-
proaches an integer for some(k, l) pair. With coherent
bunch motion,QX andQY represent the drive tunes of
simultaneous horizontal and vertical AC dipoles, andJx0

andJy0 represent the average (fixed point) actions.
The Discrete Fourier Transform (DFT) of a long action

time series generatesaction harmonic coefficients

Dxkl =
−k

2 sin[πQkl]

∑
ij

Vijkl J
i/2
x0 J

j/2
y0 eiφ0ijkl (24)

The value of a coefficient (Dxkl or Dykl) depends on the
Jx0 andJy0 values used in that measurement. Multiple
measurements on a grid of(Jx0, Jy0) values can be used to
recover a complete set ofVijkl andφ0ijkl values.

Sometimes the motion is summarized bysmearstatis-
tics [2]. The horizontal smearsxx is given by

s2xx ≡ 〈axax〉
〈ax〉〈ax〉 − 1 =

∑
ijkl

k2V 2
ijkla

2i−4
x0 a2j

y0

2i+j+3 sin2[πQkl]
(25)
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Figure 2: 1-D motion near a decapole driven resonance
with an AC dipole OFF (TOP) or ON (BOTTOM).

(assumingβx = βy = 1). Similar expressions exist for the
vertical and correlation smears,syy andsxy. Predicted and
measured smears agree well in controlled experiments with
a small number of dominant nonlinearities [3, 4].

4 A NUMERICAL EXPERIMENT

Figure 2 illustrates a simple 1-D numerical experiment.
Detuning (fromQx = 0.591 to 0.609 betweenax = 0
and2.0) is driven by three octupoles, arranged to minimize
octupole driven resonances [6]. A single decapole drives
theQx = 3/5 resonance, generating a chain of 5 islands
at aRES ≈ 1.4 in the TOP figure. The AC dipole tune
QD = 59/101 ≈ 0.584 allows a plotting period of 101
turns to be used in the BOTTOM figure. A coherentAC
dipole ONsignal is simulated by launching a single parti-
cle at the fixed point in the BOTTOM figure, to generate
a turn–by–turn “BPM” time series. The goal is to show
that this time series closely resembles that obtained with
the same launch coordinates, but with theAC dipole OFF.
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Figure 3: Discrete Fourier Transforms of the horizontal ac-
tion of a test particle in the numerical experiment.

Figure 3 shows action DFTs with the AC dipole OFF
and ON. The harmonic peaks shift becauseQX ≈
0.593(0.584) in the OFF (ON) case. Nonetheless, theDx50

andDx30 values derived from both data sets are closely
consistent, after correcting for the1/ sin[πQk0] depen-
dence in Eqn. 24. This implies that single particle Hamil-
tonian valuesVijkl andφ0ijkl can indeed be derived from
measurements of coherent motion driven by AC dipoles.

5 ACKNOWLEDGMENTS

Many thanks to Mei Bai, Rhianna Bianco, Wolfram Fis-
cher, Todd Satogata, and Chunmei Tang.

6 REFERENCES

[1] A. Chao et al, PRL 61 (1987) 2752; T. Chen et al, PRL 68
(1992) 33; T. Satogata et al, PRL 68 (1992) 1838

[2] S. Peggs, Proc. 2nd ICFA workshop, CERN 88-04, and SSC-
175 (1988)

[3] N. Merminga, Ph.D. Thesis, U. Michigan (1989)

[4] M.Y. Li, Ph.D. Thesis, U. Houston (1990)

[5] S.Y. Lee et al, PRL 67 (1991) 3768; D.D. Caussyn et al,
PRA 46 (1992) 7942; W. Fischer, Dissertation, U. Hamburg
(1995); W. Fischer et al, PRE 55 (1997) 3507

[6] T. Satogata, Ph.D. Thesis, Northwestern U. (1993)

[7] M. Bai et al, PRE 56 (1997) 6002; M. Bai, Ph.D. Thesis,
U. Indiana (1999); M. Bai et al, Beam manipulation with an
RF dipole, these proceedings (1999)

[8] B. Parker et al, Design of an AC dipole for use in RHIC, these
proceedings (1999)

[9] P. Castro-Garcia, Doctoral Thesis, U. de Valencia (1996)

[10] S. Peggs and C. Tang, RHIC/AP/159, Upton, (1998)

1574

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999


